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Preprocessing remotely-sensed data for efficient analysis and claaeification

Patrick M. Kelly, James M. W bite

Loe Alamos National Laboratory, Computer Research Group
MS B-265, Los Alamos, NM 87545

ABSTRACT

Interpreting remotely-sensed data typically requires expensive, specialized computing machinery capable of stor-
ing and manipulating large amounts of data quickly. In this paper, we preeent a method for accurately analyzing
and categorizing remotely -seneed data on much smaller, less expensive platforms. Data size is reduced in such a way
as to retain the integrity of the original data, where the format of the resultant data aet lends itself well to providing
an efficient, interactive method of data classification.

1. INTRODUCTION

A Landsat Thematic Mapper (TM) quarter scene consists of approximately 12 million pixela, each being repr-
esented by eeven spectral reflectance values between O and 255. Each quarter scene, therefore, occupies 84 megabytes
of storage, and performing even simple data manipulations for analysin or display purposes requirea a large number
of operations. By preprocessing the data by a technique known = vector qusntization or clustering, computational
requirement neceusary for image analyain and manipulation are greatly reduced.

The advantages to clustering large data sets are numerous. Many times when scientist work with multiapectral
image data, they are inter-ted in grouping together w.ta of similar data – something that clustering algorithms do
automatically. Clustered data also has a number of properties that simplify data analysis and categorization, Data
compression is a very desirable by-product of the clustering process, reducing the computational resources necessary

to manipulate the data. Additionally, because pixels belonging to the same cluster are intrinsically associated with
one another, sets of pixelo in an image which share cmnrnon characteristics can be manipulated simuitanemndy.
Statiotirs for each cluster can eMily be calculated during the clustering process, allowing many properties of the
originaf data to be retained. For many applications, we have found that once clustering has been performed, the

original data ia no longer needed.

Each pixel in an image is commonly categorized according to ita spectral nignature. Many methods are used
for chwifying multiepectral data, including both supervised and unsupervised classification methods [1, 2]. When
using supervised methods for data cl=sifrcation, a user selects training areM rcprmentative of several types of
land cover, and a cleaaifler io developed to discriminate between different chum. This clsasifier ia then used to
categorize the remaining pixeln in the scene. Numerous pnttern recognition algorithrnn of this type exist, including

nearest neighbor algorithm, discriminant function ttichniques, art iflcid neur~ nclwmkn, nnd ~tat iotical methodu, A II
overview of theme techniques ran be found in standard pattern recognition textbooke [3, 4], Statistical methods ouch
as mmcimum likelihood chuwiflem [3] have alwayo been popular for this type Of problmn. In general, although these
techniques often work well, they are very time coneuming both in computer time and opmntor effort. Additionally,
thry do not tend to nllow rMy rhwoiflcr ndjuotrncnto (m ‘Ylne-tuning” ) for the ~yntmn.

Unlike nuperviwl methodn of cl~iflc~tion, which require n umr to ddlrw training sctm,unouprwvieed techniqum
require no training An at dl, They inntmsd nttempt to mltonmtical:y find the underlying ntructure of multi.

dirnmmional datn, hy “clustering” the dmtn into grrmpn nhmriug nimil~r rharactcriRticx, [1noupmvincd claasifkatinn
in MI ofVlinc process, rnquiring very Iittln tim of the myntem unrr, A umr mimply nnedn LOnpecify A numhm of

cluntrwn to find, wrd nllnw tho cl~iflcation prngrnrn lrr do thn rrnt, This tcchniquo nmutmn, Imwnvw, thmt tho

numhnr of rmturd c~tegorim prrmnt in thn d~tA in kimwn a priori, with dnta from d ithrnt cn~rgmy rluotm Iwing
wdl-mpnrntml,
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Figure 1: Clustered Representation of Multispectral Image Data

When using clustering methods for analyzing multispectral data, many people attempt to define a relatively
small number of clusters – between 5 and 100 clusters, for example. Our technique relies on the fact that many
clusters (between 256 and 4096) can be defined for the data. The method of data analysis and classification presented
in this paper first preprocesses the data using a fast clustering algorithm. We cluster the data using a relatively

large number of clusters (as compared to the number of categories we wish to define for the data), and then use
the clustered data for analysis artd classification. For many applications, there is no need for the original data after
clustering is performed. Using the clustered data, we can efficiently manipulate computer ~kplays M well aa analyze
and categorize data.

2. CLUSTERING METHODOLOGY

The basic principle of clufltering (or vector quantization) is to take an original image (for our example, containing

around 12,000,000 pixels with each pixel being represented by a seven-dimensional vector), and represent the same
irnagc using only a smaU number of unique pixel values, A codebook of N “best pixel valued’ to represent the image

must first be generated by some iterative method (the “construction” phase of the clustering algorithm), once we
have generated these values, we step through the original image and wign each pixel to the cluster of the closest
match existing in our codebook (the “projection” phaae of the clustering algorithm). Figure 1 tihows the clustered

image representation, aa compared to the original image repre~entatiort.

In processing the data this way, two things have occured. First, we hrw reduced the volume of data needed to
rcpres(*nt the image by a factor of mven. This M rdiectd by the fnct that we now need only a single btmd of image

datn which contains indices into the mxlebook of reference vectors, Srconri, we have dorw a imlirnitl~ry c!amiflcation
{~fI,hc d;~t~; similar pixch~ in the image nrc now intrintiically nwmcintcd with onfi another.

Since we would like the clumtered data to adequately rcprwrcnt the original data, the selrrtion of the codtdmok
vectors is very important. By increasing the number of cluntm, the accuracy of image reprwwntation can bo
illlprovrd. l~rpcnding on the appiic~tiorr, we IIIIWbetween 2Ml nn(i 40!M rluNtrwn for n typitni ‘I’M qunrtw ncene, ‘lIiIt.

IIMP rwluirwl to {’luster the image ir~crwwfl MI tiw nunllmr of ciu*tm# incrrnarw, Aftmr clu~tering IIIW provi(ied n wt
t)f ciu~t,ern, the ~tatistico for c~ch clutrtrr arc computed rmd stormi in tbo codehcmk aiong with thr ciustcr rcferencp
vnctxm, ‘1’hifi is nn important Ntep bmnum? irom therw f!tntistimr, tho rombint!d #tntirntir8 of thr originrd dnt,~ crul

t~,wily be ron)putmi.



original data set will be associated with larger cluster indices than the darker pixels. The result will be an image
which, when not associated with its codebook, can easily be displayed as a black and white image of the current
scene.

3. CLUSTERING ALGORITHM

Many types of clustering methods have been developed and analyzed for use with different types of data [3, 5]. hr
general, many of these algorithm attempt to find a partitioning of a given data set that minimizes a predetermined
cost function. ‘The k-means clustering algorithm [4] attempts to minimize a squared error cost function by manipu-

lating a set of k cluster centers. In particular, this algorithm tries to partition the ciata into k clusters, denoted by

Cil with the representative vector for each cluster (&) being defined as the within-cluster mean:

This algorithm iteratively moves vectors between clusters in such a way aa to minimize the total squared error:

(1)

(2)

This algorithm, however, becomes painfully slow when using very large data sets. one basic. problem is that a

tremendous number of vector distance calculations must be performed during both the “construction” and “projec-

tion” phases of the algorithm. Several methods have been developed to improve this situation [6, 7, 8]. Many of
these schemes work very well in lower-dimensional spaces, but still tend to have a difficult time as the dimension of
the problem am-l number of clusters increase.
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We use a version oft he nearest neighbor algorithm proposed in [9], where cluster positions are sorted along one
of the axes for the data. This algorithm, like many others, does not continue to work effectively as the problem
dimension increases. To combat this, we use the first principal component of the data as the axis on which to do the
sort. This axis gives the best possible separation of the data.

Another major hindrance with the k-means algorithm is that the “construction” phase can require many passes
through our tremendous data set to build the codebook. But this extra work is not necessary; the data has large
amounts of redundant information. We use a monte carlo method for passing through the data, and only sample
about 10 percent of the actual data.

our overall clustering technique yields the same results as the k-means algorithm, but converges much faster.

Clustering times for a TM quarter scene (seven-dimensional data, 3000 rows by 3500 columns) of the Moscow and
Albuquerque areas are shown in Figure 2. These were calculated on a desktop SUN 5PARCstation lPX with 16

MB of RAM, and show CPU time required for clustering the data into 256, 512, 1024, 2048, and 4096 clusters. It
is important to note that the execution time grows linearly as the number of clusters is increased. This is not a
property of the algorithm in general, but it haa seemed to hold true for the vast majority of real-world multispectral
data sets (as well as mmt others) that the authors have encountered.

4. DATA ANALYSIS AND CLASSIFICATION

Once our TM scene has been clustered, it requires only one-seventh of the storage originally required, and the

new clustered representation provides an opportunity to use common computer displays very efficiently, Since there
are only N unique “vectors” representing the image, it takes on the order of N operations to manipulate the data as

compared to 12 million operations before the clustering waN performed. Calculating the vegetation vigor of pixels

in a TM scene shows an example of the savings incurred by clustering. One me=wre of vegetation vigor commonly
used by remote sensing specialists is (Band 4 - Band 3) / (Band 4 + Band 3). This transformation results in large
values (bright pixels) for pixels representing healthy vegetation, and requires three operations at each pixel, or 36

million operations for the entire scene. If we first cluster the data to 256 clusters, we can use H-bit computer display~
effectively. Since the clustered image contains only 256 unique values, 768 operations are required for crdculating the
v~getation vigor, and the results can be directly mapped into the computer display look-up-tab!es (LUTS). While
this is a simple type of operation, the same holds true for very complicated transformations such u the Tasseled Cap

transformation, Karhunen-Loeve transformation, principal component analysis, etc.

[Jsing a display package called SPECTRUM, developed by Los Alarms National Laboratory aud the University
of New Mexico, we arc able to use any ~iesktop workstation running Unix and Xwindows to analyze and categorize
clustered data. Figure 3 shows a clustered TM scene of Moscow ss displayed in SPECTRUM. A user can design and

manipulate a Icgend that specifies categories of land cover, labels for each category, and pseudocolor representations
to be used when categorizing geographic areas in the cluBtered image. SPECTRUM can rrianipulatc the color mnp

for the computer display using rmy transforrnntirm of the clustrrml drttn, imd can display rlllstrr positions on n

tw~)-(lirrit~r)siotlal scatter plot. (Jsing these features, wrers arr rd)lr to analyze data in a variety of wnys. Data rnn

he cntegoriirrd by selecting areas with a known type of land cover, causing all asrrocintrd pixclg in the irnagc to

l)e giver} t,hc same pseudocolor representation, (Jfring the “I’M data, for exnrnple, r+user could locate a wheat firld,

highlight the pixeln in thnt fh+l, and all other wheat fields in the mltire imsge would hr highlighted immrx!iatrly
Aft.rr cntrgorimtion, an imngr cnn l)- writtrn UU1showing the difhrrnt grogrnphic nrrns fur the Nc(’rlc

[Jsing the scatter plot, cluster positions can he displayed in s two-dimensional space with tutes specifhvl by
the user, Scicntiats can usc this ffiature to intrwprct rurrf cnt(!gorizo drtt~ hy looking rit different mathenmticnl

t,rarlsfort:~nt,i(~l}!{of the cluster pusitiorur, while rwrults of tho proms arr updntrd in thr currently di~piayed clllntrrr(l

irungo.
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Figure 3: Manipulating Moscow Data with SPECTRUM

5. ERROR ANALYSIS

TCIexamine the accuracy of the clustering relative to the number of clusters used, we will look at the averaxe

error per pixel introduced by the clustering, tile distribution of these errors, and a Chi Square goodne.w-of-fit rne~urr
.,

for diflcrtnt l~nd cover training are~.

An 800 x 800 sub~ection WM extracted from the original 3000 X 3500 original image of Moscow and tlic 3000 x

:)500 clustered vemion of the lmagc, An errol image waR created by averaging, for the 7 spectral bands, the ahBolutc
[Iiffercllcr- ~elweerr the original inmge mrd the cluakred ittmgc data, Iti Llie clustrred image, each pixel is repreeiente(]
by the Inean vector of the cluster to which it is miglled. [t ~hould be noted thnt errors for each of the indiviclu~l

handu is Hllnilar in magnitude nnd didribution to the average between the 7 spectral bands, ‘rhe first plot in Figurr
4 Htiows n p]ot of the .uvmnge r’rrur prr ba!ld p~r PIXCI r+nd this rrror + onr ~Lnn{inrfl (Irviation, ‘1’IIc ~vcrnge rrrt)r

for M(j rlu~tem io lean than 2 digitnl numberfl (IIN) ~nd drGpa to ICHSthmn 1.25 I)N mvrrage error for 4096 clu~tcrs
‘1’he maximum error over the nubmction WM much larger. There were n few popcorn rlouds it) the subjection mlri
the rrrol for the center pixel in the cloudti ranged from about 70 DN for the ’256 rluntcrn image to nbout 30 for thr

,4000 cluntm inmge but theme outli?ro in (hc dnta set wrre fcw and it is nn cMy proccsa to kolatc them M outlirrn
(Illrillg tile rluntaring prtlcrss. The mcond plot Ill FiWre II ~hown a hi-tog ram of the per pixel errorn, The histogrrmls
HIIOWtllst rven for the 2fi(l cluokro irrmge all(ms~ RI] the pixels liavc arl rrror withirl + 3 DN,

Ipind]y, wr r.hm~ tllrr~ trminit)g nltcn for (Jnrh of 4 IRII(I rovrr l~pcfl in the 11(MOx ~lhoO Moncow illmge r~pr~rntillg

~rn.w, H[)il, wnler, u~d forrwt ‘1’IIc tra.inil~g mLcn wer~ Iormtwl ill thr r~ntrr of Iargc Ilnifor[rl lnnd rovcrn arid CIIOHVII
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Figure4: Per Pixel Errorufor 800-by-800 Sukction of M~ow Scene



as if they were to be used in a traditio~lal supervised classification. We then did a Chi Square goodness-of-fit test
to determine what our confidence was that the mean vectors representing the clustered data came from the same

process which generated the statistics from the training sets in the original data. The results are shown in Figure
5. A Chi Square test with 7 degrees of freedom has a value of less than 2.83 for greater than 9070 confidence and a
value of less than 2.17 for a greater than 9576 confidence. For an image with 4096 clusters all land covers had greater
than 9570 confidence. For 256 clusters, the goodness-of-fit values were much worse for the water training sets than
for other land covers. The training sets for water were extremely uniform with a variance in each spectral band of
less than 1.5, This means that even small differences between mean vectors yield large Chi Square values.

The errors introduced in a fine grain clustering of the multi-spectral data were not large enough to affect a level
one land use classification. With 4096 clusters, the clustered image could be used to effectively represent the original
data. Each land cover type was identified as easily as with the original image data.

6. CONCLUSIONS

Using a clustering method to do a preliminary classification of multispectral data provides data sets that can
be rapidly categorized in an interactive fashion. A desktop workstation can be used to manipulate and analyze

the preprocessed data in real time. Unlike present uses of clustering, where scientists attempt to find relatively
small numbers of clusters in the data, our techniques define a large number of clusters to use. This data contains a
relatively small number of unique representative vectors that must be categorized, as compared to millions of pixels
in the raw data.
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